Acheron, a Lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts.
نویسندگان
چکیده
Acheron (Achn) was originally identified as novel gene that is induced when insect muscles become committed to die at the end of metamorphosis. In separate studies, we have demonstrated that Achn acts upstream of MyoD and is required by mammalian myoblasts to either differentiate or undergo apoptosis following loss of growth factors. In the present study we examined the role of Achn in regulating integrin-extracellular matrix interactions that are required for myogenesis. Both control C2C12 myoblasts and those engineered to express ectopic Achn expressed the fibronectin receptor integrin alpha(5)beta(1) in the presence of growth factors and the laminin receptor alpha(7)beta(1) following growth factor withdrawal. Expression of the laminin receptor was blocked in cells expressing either Achn antisense or an Achn deletion mutant that blocks differentiation. Control cells and those expressing ectopic Achn undergo sequential and transient increases in both substrate adhesion and migration before cell fusion. Blockade of Achn expression reduced these effects on laminin but not on fibronectin. Taken together, these data suggest that Achn may influence differentiation in part via its control of cell adhesion dynamics.
منابع مشابه
Laminins promote the locomotion of skeletal myoblasts via the alpha 7 integrin receptor.
The alpha 7 beta 1 integrin is specifically expressed by skeletal and cardiac muscles, and its expression and alternative mRNA splicing at the cytoplasmic domain are developmentally regulated. We analyzed the role of alpha 7 integrin in mediating myoblast adhesion and motility on different laminin isoforms. Mouse C2C12 and MM14 myoblast cell lines were found by flow cytometry and immunoprecipit...
متن کاملRegulation of muscle differentiation and survival by Acheron
Acheron (Achn), a phylogenetically-conserved member of the Lupus antigen family of RNA binding proteins, was initially identified as a novel cell death-associated gene from the intersegmental muscles of the tobacco hawkmoth Manduca sexta. C(2)C(12) cells are a standard model for the study of myogenesis. When deprived of growth factors, these cells can be induced to: form multinucleated myotubes...
متن کاملEffect of cyclic stretch on beta1D-integrin expression and activation of FAK and RhoA.
Integrins play a pivotal role in proliferation, differentiation, and survival in skeletal and cardiac myocytes. The beta(1D)-isoform of the beta(1)-integrin is specifically expressed in striated skeletal muscle. However, little is known about the role and the mechanisms by which the splice variant beta(1D)-integrin regulates myogenesis and mechanotransduction. We observed that cyclic mechanical...
متن کاملIdentification of CD9 extracellular domains important in regulation of CHO cell adhesion to fibronectin and fibronectin pericellular matrix assembly.
CD9, a 24-kDa member of the tetraspanin family, influences cellular growth and development, activation, adhesion, and motility. Our investigation focuses on the hypothesis that the CD9 second extracellular loop (EC2) is important in modulating cell adhesive events. Using a Chinese hamster ovary (CHO) cell expression system, we previously reported that CD9 expression inhibited cell adhesion to f...
متن کاملMannose receptor regulates motility
I f myoblasts are to fuse with nascent myotubes and thus form muscles, they must apparently migrate and chew up extracellular matrix (ECM), according to Jansen and Pavlath (page 403). These activities require expression of the mannose receptor (MR) in differentiating myoblasts. The pathway is induced when nascent myotubes secrete IL-4, which induced expression of the MR in myoblasts. Although M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 298 1 شماره
صفحات -
تاریخ انتشار 2010